Покорим Бесконечность Вместе!!!
Земля - колыбель человечества, но нельзя же вечно жить в колыбели! (К. Э. Циолковский)
Проект Освоения Космоса


Струйные энергетические технологии

Кондрашов Б.М.
Москва, Россия

Содержание

Введение

Описание

Способ 1

Способ 2

Способ 3

Способ 4

Заключение

Литература и используемые обозначения


Первый способ

Кинетическую энергию газовой массы для получения мощности на валу можно использовать только в двигателях динамического принципа действия. В данном случае низкопотенциальная энергия преобразуется в струйном ГТД с эжекторным сопловым аппаратом и рабочим телом, получаемым при сгорании топлива в камере периодического сгорания [4]. Процесс последовательного присоединения воздушных масс состоит из повторяющейся с заданной периодичностью пары последовательных, но разных термодинамических циклов - в каждом цикле свой источник энергии и рабочее тело. В первом цикле после сгорания топлива (при V=const) энергия продуктов сгорания, истекающих из реактивного сопла, преобразуется в кинетическую энергию первой части реактивной массы, которая движется в эжекторном насадке как газовый поршень и создаёт вслед за собой разрежение, а при истечении воздействует на лопатки турбины, создавая момент на валу. За счёт полученного в насадке разрежения, источником энергии во втором цикле становится потенциальная и тепловая энергия сжатого силой гравитации атмосферного воздуха, который под действием разности давлений втекает в насадок, расширяясь, охлаждаясь и ускоряясь как в стохастическом природном процессе, но в заданном направлении, образуя при истечении из эжекторного насадка вторую часть реактивной массы с расчётными термодинамическими параметрами, которая тоже воздействует на лопатки. При ускорении присоединяемого воздуха в насадке понижается давление, увеличивая разность потенциалов давлений перед истечением в него газовой массы импульса активной струи следующего периода и, соответственно, кинетическую энергию данной массы. Как следствие ускорения повышается степень разрежения в насадке во втором цикле этого периода и скорость присоединяемого в нём воздуха. Тем самым, в результате преобразования энергии низкопотенциального источника - атмосферы в предыдущем периоде создаются условия для повышения эффективности преобразования энергии высокопотенциального источника в следующем периоде.

Таким образом, в отличие от процесса параллельного присоединения, в котором уменьшается кинетическая энергия эжектирующего потока за счёт перераспределения его первоначальной энергии на большую массу газа, периодическое нарушение равновесного состояния атмосферы в эжекторном насадке воздействием пульсирующей активной струи создаёт в нём с заданной частотой разность потенциалов давлений, обеспечивающую при восстановлении равновесного состояния не только ускорение присоединяемых воздушных масс, но и увеличение кинетической энергии активной струи. А в результате этого дискретного процесса объединённая масса воздействует на лопатки турбины с возросшей (по сравнению с активной струёй) кинетической энергией, увеличивая момент на её валу без дополнительных затрат топлива. При этом для получения одинаковой мощности топлива затрачивается меньше (пропорционально коэффициенту m, скорректированному на величину коэффициента wtm), чем в ГТД традиционных схем.

После начала истечения продуктов сгорания уменьшается их давление в камере, а также перед критическим сечением сопла и, соответственно, степень расширения "хвостовой" части газовой массы импульса в первом цикле и её скорость. Как следствие, происходит снижение степени разрежения в насадке, уменьшение присоединяемой во втором цикле воздушной массы и её скорости. В результате "головная" часть импульса продуктов сгорания следующего периода (имеющая скорость больше, чем Cpj) выталкивает из насадка "хвостовую" часть присоединяемой воздушной массы предыдущего периода, имеющую меньшую скорость. Это приводит к частичному смешению разделённых газовых масс и уменьшению коэффициента wtm.

В экспериментах, проведенных О.И. Кудриным при эжектировании атмосферного воздуха пульсирующей струёй продуктов сгорания, был получен прирост реактивной силы до 140% к исходной тяге, т.е. тяга увеличилась в 2.4 раза. Известно, что величина прироста тяги, получаемая в результате эжекционного процесса, зависит от геометрических параметров эжекторного устройства, изменения реактивной массы и скорости её истечения. Этот прирост тяги мог быть получен при различных значениях параметров процесса присоединения. При этом прирост кинетической энергии может значительно отличаться от прироста тяги, так как в большей степени зависит от изменения скорости объединённой массы. В данном случае, если коэффициент wtm равен 1, а m равен 2.4, то оба прироста одинаковы, и кинетическая энергия объединённой реактивной массы

Etm= 0.5 (1 + m) C2tm,     (2.1)

будет больше, чем кинетическая энергия активной струи

Eaj = 0.5 C2aj,     (2.2)

также в 2.4 раза. Если коэффициент wtm больше 1, то прирост кинетической энергии больше прироста тяги. Чтобы получить такой же прирост тяги (в 2.4 раза) при wtm меньше 1, присоединяемая воздушная масса должна быть равна 2.4mn, где n - коэффициент, на который уменьшается Caj и Ctm. А для получения прироста кинетической энергии, равного приросту тяги, в процессе с wtm меньше 1, необходим коэффициент m, увеличенный в n2 раз. Тогда для получения прироста кинетической энергии в 2.4 раза, при предположении, что Ctm будет меньшее, по сравнению с Cpj, например, в 2 раза (что маловероятно в этом процессе), m должен быть 2.4 x 22 т.е. равен 9.6. А коэффициент m, полученный экспериментально, больше 10, поэтому прирост кинетической энергии и при таком гипотетическом предположении больше прироста тяги.

Таким образом, значение кинетической энергии, полученное в результате процесса последовательного присоединения (при увеличении тяги в 2.4 раза и максимально возможном уменьшении wtm), равное Etm = 0.5 (1 + 2.4mn2) (Ctm/n)2, может быть больше, чем в 2.4 раза кинетической энергии активной струи Eaj = 0.5 C2aj. Причём полученная кинетическая энергия объединённой реактивной массы не рассеивается в атмосфере, как при создании тяги движителя, а используется для выполнения механической работы. Следовательно, большая часть мощности данным способом получается за счёт преобразования потенциальной энергии и низкопотенциальной теплоты сжатых под действием гравитации газов в кинетическую энергию воздушной массы, воздействующей на лопатки турбины. Поэтому эффективность комбинированных струйных ГТД оценивается суммарным КПД, который равен КПД теплового двигателя, увеличенному на произведение коэффициентов m и wtm.

Сегодня возможности повышения эффективности ГТД с циклом при P=const. практически исчерпаны, а значения коэффициента m, полученные экспериментально, в зависимости от параметров процесса присоединения изменяются от 10 до 50, т. е. эффективность комбинированных двигателей может быть более чем на порядок выше эффективности современных ГТД (с соответствующим уменьшением выброса в атмосферу продуктов сгорания).

Автором статьи разработан стендовый вариант комбинированного струйного ГТД (совместно с "НПО Машиностроение", г. Реутов подготовлена конструкторская документация), который позволяет варьировать и оптимизировать основные параметры процесса последовательного присоединения, в т.ч. с учетом скорости набегающего потока.

Далее >>


Нас считают