Покорим Бесконечность Вместе!!!
Земля - колыбель человечества, но нельзя же вечно жить в колыбели! (К. Э. Циолковский)
Проект Освоения Космоса


Струйные энергетические технологии

Кондрашов Б.М.
Москва, Россия

Содержание

Введение

Описание

Способ 1

Способ 2

Способ 3

Способ 4

Заключение

Литература и используемые обозначения


Второй способ

Проведенные эксперименты [3] показали, что оптимальное значение Caj продуктов сгорания в процессе присоединения находится в диапазоне скоростей, которые можно получать без дополнительного подогрева сжатого рабочего тела перед его расширением в реактивном сопле. Следовательно, продукты сгорания (с давлением, получаемым при нагреве за счёт сжигания топлива в замкнутом объёме) можно заменить воздухом, сжимаемым в компрессоре, а камеру сгорания (с рабочим телом для одного цикла) - пневмоаккумулятором с большим объёмом [5]. При истечении воздуха из пневмоаккумулятора давление перед критическим сечением сопла остаётся постоянным в течение всего цикла. Поэтому "хвостовая" часть газовой массы импульсов активной струи, снижающая эффективность процесса присоединения, отсутствует, что практически исключает смешение последовательно движущихся разделённых воздушных масс и, следовательно, потери на их трение. В результате коэффициент wtm становится больше 1. Так как Ctm равно Caj, то кинетическая энергия объединённой массы (2.1) будет больше кинетической энергии активной струи (2.2), т. е. Etm больше Eaj, и, соответственно, больше потенциальной энергии рабочего тела - сжатого воздуха, образующего активную струю Eace, не менее, чем в m раз. Величина m изменяется в зависимости от параметров процесса присоединения в диапазоне от 10 до 50 [3], поэтому Eace, составляет лишь 0.1 - 0.02 Etm. Причём для повышения давления воздуха в пневмоаккумуляторе перед его расширением в струйном устройстве можно использовать разные способы, в т. ч. сжатие в механическом компрессоре за счёт различных источников энергии, а такой баланс энергии позволяет осуществлять привод компрессора за счёт мощности, полученной на валу турбины в результате процессов преобразований энергии атмосферы в предыдущих периодах.

Суммарные энергозатраты и потери в процессах преобразований

Eexp = Eace + Ece + Ete + Eoe     (2.3)

где Ece - потери энергии при сжатии воздуха в компрессоре; Ete - потери энергии при преобразовании Etm в турбине; Eoe - прочие потери энергии.

Общий удельный вес технологических потерь (Ece + Ete + Eoe), не превышает 25% Etm, в том числе: (Ece 20% Eace); (Ete 15% Etm); (Eoe 2% Eaj). (потери означают, что данный способ преобразования энергии не противоречит второму началу термодинамики) В основном величина потерь зависит от КПД турбины, а удельный вес потерь в компрессоре и прочих потерь при больших величинах m незначителен и составляет, соответственно, 1% и 0.1% от Etm, увеличиваясь с уменьшением m.

С учётом энергозатрат и потерь (2.3), энергия для использования потребителями

Eus = Etm - Eexp.     (2.4)

Если принять Etm равной 100%, то, при среднем значении m равном 20 и wtm равном 1, Eus = 100% - (5% + 1% + 15%+ 0.1%) = 78.9%, а Eexp равна 21.1% Etm. Если основные параметры процесса и/или их соотношения отклоняются от оптимальных величин, то значения m и wtm уменьшаются. При уменьшении коэффициента m до 0.695 и соответствующем изменении уровня технологических энергозатрат и потерь, кинетической энергии объединённой массы будет достаточно только для их компенсации, а Eus ~ 100% - (69.5% + 13.9% + 15%+ 1.4%) ~ 0. Это означает, что для самоподдержания процесса достаточно увеличить кинетическую энергию реактивной массы на 44%, т.е. Etm = 100 больше Eaj = 69.5 лишь в 1.44 раза (100/69.5=1.44) и такое соотношение обеспечивает непрерывность процессов бестопливного преобразования энергии атмосферы. Прирост кинетической энергии за счёт увеличения m сверх этого уровня может быть использован для потребления. Например, если m равен 1, технологические затраты и потери изменяются: Eace до 50%, Ece до 10%, Eoe до 1%, а Eus = 100% - (50% + 10% + 15% + 1%) = 24% Etm. Совершенно очевидно, что даже при такой малой величине m, равной 1 (а в процессе последовательного присоединения величина коэффициента m = 10 достижима при не самых оптимальных параметрах), невысоких КПД турбины (0.85) и компрессора (0.8), для сжатия рабочего тела можно использовать энергию, полученную в предыдущих циклах, при этом оставляя потребителям 24% располагаемой Etm.

Результаты экспериментов также подтверждают возможность преобразований энергии атмосферы при сжатии рабочего тела за счёт мощности, полученной при её преобразовании в предыдущих периодах. Если экстраполировать увеличение кинетической энергии (в 2.4 раза), полученное экспериментально в процессе последовательного присоединения с активной струёй из продуктов сгорания [3], на аналогичный процесс с использованием сжатого воздуха для образования этой струи, то даже без учёта реального снижения потерь на смешение и трение объединяемых масс, повышающего эффективность этого процесса, Eus = 100% - (41.7%+8.3%+15%+ 0.8%) = 34.2% Etm.

Согласно второму началу термодинамики не вся энергия одного неисчерпаемого источника преобразуется в работу - часть превращается в теплоту, которая рассеивается во внешней среде. А при механическом сжатии рабочего тела - в высокопотенциальную теплоту, температуру которой можно регулировать (в зависимости от степени сжатия и охлаждения рабочего тела перед расширением) и полезно использовать в этой среде, например, через теплообменные устройства систем отопления. При расширении сжатого и охлаждённого, например, до атмосферной температуры рабочего тела значения Caj и Ctm будут находиться в диапазоне величин коэффициента скорости l до 2.45, достаточном для получения окружных скоростей, обеспечивающих высокий КПД турбомашин.

Температура высокопотенциального рабочего тела, а также низкопотенциального - воздуха в процессах преобразований энергии и выполнения работы понижается. Управляя количеством атмосферного и холодного отработавшего воздуха, возвращаемого в эжекторные насадки в качестве присоединяемых масс, можно получать воздух с регулируемой температурой, например, для использования в системах кондиционирования. Если отработавший в одном устройстве присоединения или эжекторном сопловом аппарате воздух направлять в качестве присоединяемых масс в другое или следующий сопловой аппарат и т.д., то его можно охлаждать до температур, используемых в криогенной технике.

Процесс присоединения дополнительных масс воздуха в рассмотренном бестопливном способе преобразования энергии атмосферы также состоит из повторяющейся с заданной периодичностью пары последовательно связанных термодинамических циклов со своими источниками энергии и рабочими телами: из обратного цикла Карно (цикла воздушного теплового насоса - холодильной машины) и цикла - охлаждения атмосферного воздуха при его расширении и ускорении. Часть мощности, полученной в результате преобразований энергии атмосферы в предыдущих периодах, используется для сжатия атмосферного воздуха в обратном цикле Карно. За счёт работы расширения сжатого воздуха (высокопотенциального рабочего тела) создаются условия для начала второго цикла с использованием энергии низкопотенциального рабочего тела (также как в процессе с продуктами сгорания).

Таким образом, за счёт энергии атмосферы осуществляется привод воздушного теплового насоса, в результате работы которого создаются условия для преобразования в эжекторном насадке низкопотенциальной энергии атмосферного воздуха, находящегося вне насадка в равновесном состоянии, в доступную для использования кинетическую энергию воздушной струи, высокопотенциальную теплоту и "холод" расчётной температуры. Данный бестопливный способ преобразования энергии атмосферы отличается от способа её преобразования в традиционных ветродвигателях управляемостью процесса создания воздушной струи в эжекторном насадке и высокой плотностью энергии на единицу рабочей площади. Устройства для осуществления этого способа - атмосферные бестопливные струйные двигатели. Если перед лопастями действующего ветродвигателя установить соответствующий его диаметру эжекторный насадок, а часть мощности использовать для сжатия рабочего тела, образующего газовую массу импульсов активной струи, создающей условия для ускорения воздушных масс в насадке перед воздействием на лопасти, то получим один из вариантов таких струйных двигателей.

Их эффективность, по сравнению с известными ветровыми, солнечными и геотермальными преобразователями даровой и экологически чистой энергии, не зависит от географических, временных и погодных условий, а удельная мощность значительно выше и сопоставима с удельной мощностью ГТД традиционных схем. Отсутствие жаростойких материалов и систем, связанных с использованием топлива, упрощает конструкцию, технологию, снижает себестоимость, повышает надёжность, пожаровзрывобезопасность и, наряду с возможностью одновременной выработки трёх видов энергии, расширяет сферу применения бестопливных двигателей. Зависит эффективность, в основном, от значений m и wtm, технологических потерь, а также видов используемой потребителями энергии и сферы применения (в энергетических стационарных и мобильных системах, для привода различных устройств и типов движителей с одновременным получением высокопотенциальной теплоты и/или "холода"). Её можно оценивать величиной удельной мощности или отношением Eus/Etm, числитель которого увеличивается на величину тепла и/или "холода" - "потерь", которые полезно используются одновременно с получаемой мощностью.

Экономический эффект от применения этих двигателей в энергетике, наряду с отсутствием затрат на топливо, повышается за счёт доступности атмосферы - источника энергии, при котором не нужна концентрация мощностей, необходимая при использовании традиционных энергоносителей и, соответственно, не нужны протяжённые коммуникации, необходимые для передачи централизованно выработанной энергии потребителям. Применение атмосферных бестопливных струйных двигателей для привода различных движителей делает транспортные системы одновременно и мобильными универсальными автономными источниками энергии для внешнего потребления, а выполнение их основных функций - сколь угодно длительным "без дозаправки". Например, при их использовании в авиации время полёта летательного аппарата в атмосфере ограничивается только износостойкостью конструкции такого двигателя и самого аппарата.

Сфера применения бестопливных струйных технологий не ограничивается энергетикой и транспортом. Однако, самый необходимый и большой социально-экономический эффект может быть получен при замене традиционных способов преобразования энергии именно в этих отраслях, и позволит резко сократить их негативное влияние на окружающую среду и биосферу.

С учётом результатов научных и экспериментальных исследований процесса последовательного присоединения эксперимент по получению мощности на валу атмосферного бестопливного струйного двигателя с открытым термодинамическим циклом можно провести без затрат на дополнительные научные исследования, разработку и производство оригинальной конструкции. Для создания стендового образца такого двигателя можно использовать уже готовые устройства, например, в качестве силового элемента - турбинный модуль маломощного турбовального ГТД, а для сжатия воздуха, образования активной струи - компрессор любого типа, ресивер с пневмоклапаном и реактивным соплом. Соотношения геометрических параметров эжекторного устройства и необходимые параметры процесса присоединения для получения расчётного количества и скорости объединенной воздушной массы, воздействующей на лопатки турбины, известны, а конструкция эжекторного насадка - единственного элемента, который необходимо изготовить, - предельно проста. Кроме того, возможность изменения параметров модульной конструкции позволяет использовать её для оптимизации параметров процесса последовательного присоединении с воздушной активной струёй и при разработке необходимых (в зависимости от сферы применения) оригинальных конструкций бестопливных струйных ГТД.

Из приведенного выше описания бестопливного способа преобразования энергии и двигателей для его реализации видно, что, наряду с простотой конструкции, они достаточно эффективны, однако можно дополнительно повысить их эффективность и расширить сферы применения, незначительно усложнив конструкцию (см. рисунок).

Принципиальная схема возможных вариантов преобразования низкопотенциальной энергии в бестопливных струйных двигателях
Принципиальная схема возможных вариантов преобразования низкопотенциальной энергии
в бестопливных струйных двигателях

1 - сужающееся реактивное сопло;
2 - эжекторный насадок - устройство присоединения дополнительных масс эжекторного соплового аппарата;
3 - первая турбина силового вала;
4 - вторая турбина силового вала;
5 - силовой вал;
6 - центробежный компрессор силового вала;
7 - осевой компрессор силового вала;
8 - центробежный диффузор;
9 - выпускной пневмоклапан;
10 - пневмоклапан;
11 - направляющий аппарат;
12 - объём вихревой камеры - низкотемпературного теплоприёмника;
13 - направляющий аппарат на входе второй ступени турбины 4;
14 - лопатки второй ступени турбины 4;
15 - направляющий аппарат на входе компрессора 6;
16 - выпускной пневмоклапан;
17 - пневмоклапан;
18 - пневмоаккумулятор рабочего тела;
19 - обратный клапан для подачи рабочего тела, сжатого внешними устройствами;
20 - обратный клапан для подачи рабочего тела, сжатого в компрессоре двигателя;
21 - электромагнитный клапан для периодической подачи рабочего тела;
22 - турбинные лопатки - направляющий аппарат на входе в турбину 3;
23 - турбинные лопатки турбины 3;
24 - направляющий аппарат на выходе турбины 3;
25 - лопатки первой ступени турбины 4;
26, 27 - клапаны впускные;
28 - реактивное сопло;
29 - турбина, не закреплённая на силовом валу;
30 - компрессор, кинематически не связанный с силовым валом.

В рассматриваемых вариантах эжекторный сопловой аппарат может состоять из сужающегося реактивного сопла 1 (или струйного устройства любого другого принципа действия, обеспечивающего расчётные параметры импульсов активной струи) и эжекторного насадка - устройства присоединения 2. Для уменьшения продольных размеров струйного двигателя проточная часть устройства присоединения и турбин 3 и 4, закреплённых на концах силового вала 5, находится внутри этого полого вала, а снаружи вала расположены роторы компрессоров 6,7. Выход ступеней компрессора 30, не закреплённого на валу 5, связан через обратный клапан 20 с пневмоаккумулятором 18 рабочего тела. Сжатый воздух в него подаётся через клапаны 19 или 20. Клапан 21 обеспечивает расчетную периодичность и длительность истечения сжатого воздуха из реактивного сопла 1. Вслед за воздушной массой импульса в устройстве 2 образуется разрежение. Под действием атмосферного давления присоединяемый воздух через клапаны 26,27, лопатки 22 турбины 29, лопатки 23 турбины 3, направляющий аппарат 24 ускоряется вслед за воздушной массой импульса. От геометрических параметров сопла 1, устройства 2, их соотношения и термодинамических параметров реактивной массы импульсов зависит степень получаемого в устройстве 2 разрежения и период времени, в течение которого оно сохраняется. А от этого зависит количество присоединяемого воздуха, его скорость и суммарный напор, создающий момент на валу 5 за счёт воздействия втекающей воздушной массы на лопатки 23 турбины 3 и объединённой реактивной массы на лопатки 25 турбины 4, закреплённой на другом конце этого вала. Часть полученной суммарной мощности используется для привода компрессоров 6,7, а часть внешними потребителями.

В одном из вариантов (А) отработавшая объединённая масса направляется в центробежный диффузор 8, в котором её оставшаяся кинетическая энергия преобразуется в потенциальную перед выбросом во внешнюю среду по каналу а через клапан 9 для повышения эффективности процесса присоединения, и/или повторного использования через канал в в качестве присоединяемых масс.

Сжимая отработавшую массу в компрессоре 7 за счёт части Eus, можно повысить эффективность процесса присоединения и стравливать её во внешнюю среду с повышенным давлением через клапан 9 и/или повторно использовать, подавая через клапан 10 по каналам в и с. При этом, за счёт разрежения, получаемого перед входом в компрессор 7, увеличивается разность потенциалов давлений при образовании импульсов, а в результате - скорость активной струи и кинетическая энергия объединённой реактивной массы с понижением температуры и увеличением момента на валу 5.

Получать разрежение для увеличения разности потенциалов давлений можно без дополнительных затрат энергии. Для этого струи, истекающие из лопаток 25 турбины 4 после создания момента, через направляющий аппарат 11 закручиваются по спирали (Б). В вихревой камере 12, в которую происходит истечение, за счёт оставшейся кинетической энергии создается вихревой эффект, образующий в центральной части разрежение, увеличивающее разность потенциалов давлений при расширении рабочего тела. Одновременно в периферийной части созданного вихря повышается давление объединённой массы, которая через направляющий аппарат 13 воздействует на лопатки 14 турбины 4, а затем (сразу или после сжатия в компрессоре 6) через клапан 16 выбрасывается и/или через клапан 17 направляется для повторного использования. В этом случае можно дополнительно увеличивать разность потенциалов давлений за счёт использования части Eus, соединив центр объёма 12 через направляющий аппарат 15 со входом компрессора 6.

При сжатии низкотемпературной отработавшей массы уменьшаются затраты энергии на работу сжатия, по сравнению со сжатием воздуха с атмосферной температурой, поэтому двигатели с открытым циклом, наряду с получением мощности, можно использовать в качестве эффективных генераторов высокопотенциального рабочего тела для более мощных бестопливных систем, создания низкотемпературных реактивных струй (в соплах 28) и тяги. Эффективность сжатия можно повысить, используя биротативные компрессоры 7 и 30 с вращающимися в противоположные стороны рабочими колёсами без неподвижных направляющих аппаратов.

Далее >>


Нас считают